Głębokie sieci neuronowe w identyfikacji rozkładów brzegowych i wielowymiarowej kopuli w kontekście agregacji ryzyka w Solvency II
DOI: https://doi.org/10.33995/wu2023.4.7
Abstrakt
Słowa kluczowe
Bibliografia
Acar E.F., Genest C., Nešlehová J., Beyond simplified pair-copula constructions, “Journal of Multivariate Analysis” 2012, No. 110; doi: 10.1016/j.jmva.2012.02.001.
Bedford T., Cooke R.M., Vines – A new graphical model for dependent random variables, “Annals of Statistics” 2002, No. 30(4); doi: 10.1214/aos/1031689016.
Bermúdez L., Ferri A., Guillén M., A correlation sensitivity analysis of non-life underwriting risk in solvency capital requirement estimation, “ASTIN Bulletin” 29.04.2013; doi: 10.1017/asb.2012.1.
Castellani G. et al., Accuracy and Robustness of Machine Learning Methods in SCR Estimation Nested Monte Carlo Simulation, Insurance Data Science Conference June 2019.
Cifuentes A., Charlin V., Operational risk and the Solvency II capital aggregation formula: Implications of the hidden correlation assumptions, “Journal of Operational Risk” 2016, No. 11(4); doi: 10.21314/JOP.2016.181.
Eling M., Jung K., Risk aggregation in non-life insurance: Standard models vs. internal models, “Insurance: Mathematics and Economics” 2020, No. 95; doi: 10.1016/j.insmatheco.2020.09.003.
Genest C., Correlation and Dependence, “Journal of the American Statistical Association” 2002, 97(458); doi: 10.1198/jasa.2002.s472.
Gneiting T., Raftery A.E., Strictly proper scoring rules, prediction, and estimation, “Journal of the American Statistical Association” 2007, No. 102(477); doi: 10.1198/016214506000001437.
Haff I.H., Parameter estimation for pair-copula constructions, “Bernoulli” 2013, No. 19(2); doi: 10.3150/12-BEJ413.
Hassan A.K.I., Abraham A., Modeling insurance fraud detection using imbalanced data classification, “Advances in Intelligent Systems and Computing” 2016, No. 419; doi: 10.1007/978-3-319-27400-3_11.
Ibiwoye A., Ajibola O.O., Sogunro A., Artificial Neural Network Model for Predicting Insurance Insolvency, “International Journal of Management and Business Research” 2012, No. 2(1).
Inanoglu H., Jacobs M., Models for Risk Aggregation and Sensitivity Analysis: An Application to Bank Economic Capital, “Journal of Risk and Financial Management” 2009; doi: 10.3390/jrfm2010118.
Kingma D.P., Ba J.L., Adam: A method for stochastic optimization, 3rd International Conference on Learning Representations, ICLR 2015 – Conference Track Proceedings.
Ling C.K., Fang F., Kolter J.Z., Deep Archimedean Copulas, [w:] Advances in Neural Information Processing Systems, [ed.] Larochelle H. et al., Curran Associates, Inc. New York 2020.
Lintvelt M., Least-Squares Monte Carlo Within Solvency II, Amsterdam School of Economics, Amsterdam 2016.
Mittnik S., Solvency II Calibrations: Where Curiosity Meets Spuriosity, “Preprints” 2016; doi: 10.20944/ preprints201607.0021.v1.
Rozporządzenie delegowane Komisji (UE) 2015/35 z dnia 10 października 2014 r. uzupełniające dyrektywę Parlamentu Europejskiego i Rady 2009/138/WE w sprawie podejmowania i prowadzenia działalności ubezpieczeniowej i reasekuracyjnej (Wypłacalność II), Dz.U. Unia Europejska, 17.1.2015.
Shaw R.A., Spivak G., Correlations and Dependencies in Economic Capital Models, “Discussion Paper” September 2009.
Schubert T., Grießmann G., German Proposal for a Standard Approach for Solvency II, “The International Association for the Study of Insurance Economic” 2007, No. 32(1).
Spanhel F., Kurz M.S., Simplified vine copula models: Approximations based on the simplifying assumption, “Electronic Journal of Statistics” 2019, No. 13(1); doi: 10.1214/19-EJS1547.
Sun Y., Cuesta-Infante A., Veeramachaneni K., Learning vine copula models for synthetic data generation, 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9thAAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019; doi: 10.1609/aaai.v33i01.33015049.
Szczęsny K., Wpływ błędnej specyfikacji struktury zależności wprocesie agregacji ryzyka na efekt dywersyfikacji w Solvency II, [w]: Problemy gospodarcze i społeczne Polski i Europy, Sojka E., Acedański J. [red.], Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, Katowice 2022.
Szczęsny K., Wykorzystanie kaskad kopuli w agregacji ryzyka w procesie wyznaczania kapitałowych wymogów wypłacalności w Solvency II, [w:] Sektor ubezpieczeń w obliczu wyzwań współczesności, Lemkowska M., Wojtkowiak M. [red.], Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, Poznań 2022; https://doi.org/10.18559/978-83-8211-131-6/7.
Yunos Z.M. et al., Predictive modelling for motor insurance claims using artificial neural networks, “International Journal of Advances in Soft Computing and its Applications” 2016, No. 8(3).
Zeng Z., Wang T., Neural Copula : A unified framework for estimating generic high-dimensional Copula functions, Research Gate 2022; doi: https://doi.org/10.48550/arXiv.2205.15031.
Ziel F., Berk K., Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules, arXiv 2019.