### GuyCarpenter

# MODELOWANIE RYZYKA POWODZI

Wnioski z powodzi z 2024 roku

TI II J

9 czerwca 2025 Paweł Franków, Head of Emerging Markets Analytics

A business of Marsh McLennan

1.2024 Flood2.Change in Flood Risk3.Quantification of Flood Risk



# 2024 Flood



### Improved risk quantification can enable effective mitigation

Case Study: September 2024 Central and Eastern Europe Flooding

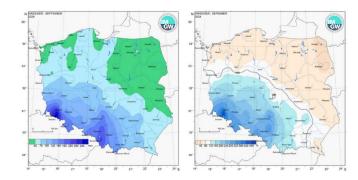


**Rainfall exceeded 100-year return period** due to persistent rainfall over several days during 14<sup>th</sup>-20<sup>th</sup> September 2024, analogous to 1997 flood in Poland



Human-induced climate change has contributed to roughly a doubling in likelihood and a 7% increase in intensity

In General: Flood defence improvements, reservoir management (e.g. Racibórz Dolny reservoirs) and better warning systems since 1997 and 2010 floods reduced damage




Number of fatalities only around 10%-20% of the 1997 and 2002 European floods

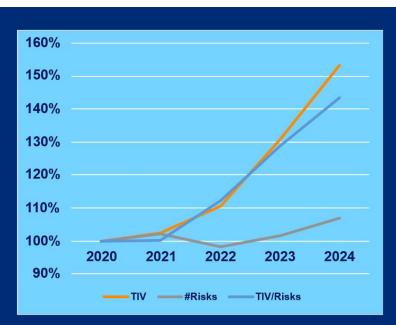


**Total Europe industry loss of €2bn**, estimated **25-65 year return period** for Poland, Czech Republic and Austria

Rainfall accumulation September 2024 Source: IMGW






Sources: IMGW, PERILS as of 19<sup>th</sup> December 2024, Guy Carpenter Report dated 24<sup>th</sup> September 2024, <u>Climate change and high exposure increased costs and disruption to lives and livelihoods</u> from flooding associated with exceptionally heavy rainfall in Central Europe – World Weather <u>Attribution</u>

# **Change in Flood Risk**



Flood risk drivers are subject to change





Average across anonymized portfolios in Poland

+7% no of risks

+53% TIV

Significant portfolio growth and inflation

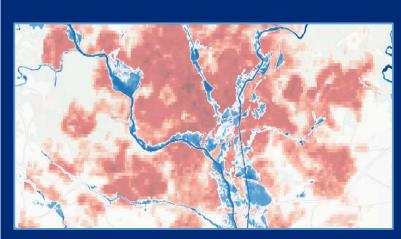
**Risk Selection matters** 

#### Flood risk drivers are subject to change



#### Exposure / Portfolio

Risk metrics to flood loss are changing constantly:


- Risk Count
- Sums Insured
- Inflation
- · Growth strategies
- · Locations detail



#### Socio Economic Factors

Building guidelines allow / prohibit population to build within flood zones

- Based on report by Polish Economic Institute
- As population changes new structure locations develop



Population Density Flood Zone

Over 20% of Poland's population living in the areas at risk of flooding

#### Flood risk drivers are subject to change



Exposure / Portfolio

Risk metrics to flood loss are changing constantly:

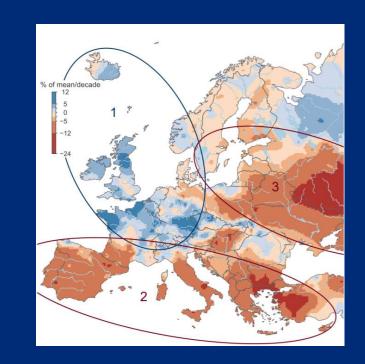
- Risk Count
- · Sums Insured
- Inflation
- Growth strategies
- · Locations detail



#### **Climate Change Impact**

Quantification of climate change impact allows adaption

- Different °C scenarios
- · Highly uncertain
- Does not include mitigation measures that will come with increased food risk


#### GuyCarpenter



#### Socio Economic Factors

Building guidelines allow / prohibit population to build within flood zones

- Based on report by Polish Economic Institute
- As population changes new structure locations develop



### Uncertainty

as to long term tribute to climate change in Poland

### Adaptation

Defense measures will counterbalance climate change effects. Otherwise much higher values could apply.

#### Flood risk drivers are subject to change



Exposure / Portfolio

Risk metrics to flood loss are changing constantly:

- Risk Count
- · Sums Insured
- Inflation
- Growth strategies
- · Locations detail

#### **Climate Change Impact**

Quantification of climate change impact allows adaption

- Different °C scenarios
- · Highly uncertain
- Does not include mitigation measures that will come with increased food risk



**1** 

#### Socio Economic Factors

Building guidelines allow / prohibit population to build within flood zones

- Based on report by Polish Economic Institute
- As population changes new structure locations develop

#### Flood Management

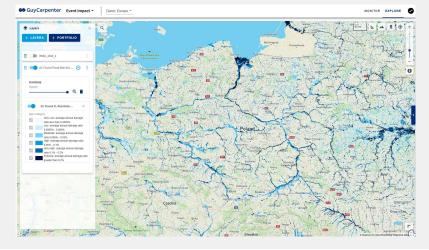
- Flood Management has improved significantly.
- Dam updates (some outstanding)
- Mobile Defenses
- Reservoirs
- Warning Systems



### Some initiatives not progressing

Investments paid off in 2024 and saved losses and lives

## Quantification of Flood Risk




### **GCAT Flood Risk Assessment**

#### **Probabilistic Models and Zonation Approaches**

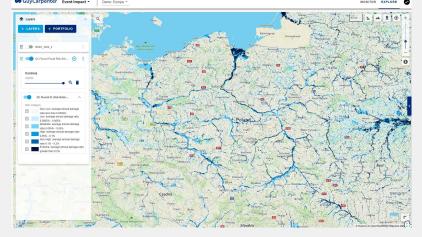
#### 1 - GCAT Risk Rating Layers

| Helps with:       | Technical underwriting, Identification of loss drivers,<br>Monitoring of UW guidelines and portfolio<br>performance, |
|-------------------|----------------------------------------------------------------------------------------------------------------------|
| Release:          | 2024                                                                                                                 |
| Perils available: | Fluvial flood, pluvial flood (wildfire, earthquake, tropical cyclone, severe convective storm)                       |
| Risk metric:      | Occupancy specific annual damage ratios                                                                              |



#### GuyCarpenter

#### 2 - GCAT Probabilistic Model




### **GCAT Flood Risk Assessment**

#### **Probabilistic Models and Zonation Approaches**

#### 1 - GCAT Risk Rating Layers

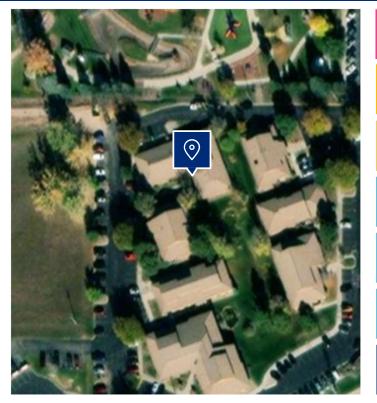
| Helps with:       | Technical underwriting, Identification of loss drivers,<br>Monitoring of UW guidelines and portfolio<br>performance, … |
|-------------------|------------------------------------------------------------------------------------------------------------------------|
| Release:          | 2024                                                                                                                   |
| Perils available: | Fluvial flood, pluvial flood (wildfire, earthquake, tropical cyclone, severe convective storm)                         |
| Risk metric:      | Occupancy specific annual damage ratios                                                                                |
|                   |                                                                                                                        |



#### GuyCarpenter

#### 2 - GCAT Probabilistic Model




12

### **GCAT Risk Rating – Use Case Technical Underwriting**

#### **Location-Level Risk Rating**



The risk rating products can be used for any locations in the world. They provide the corresponding level of risk by category or the underlying damage ratio for more quantitative underwriting.



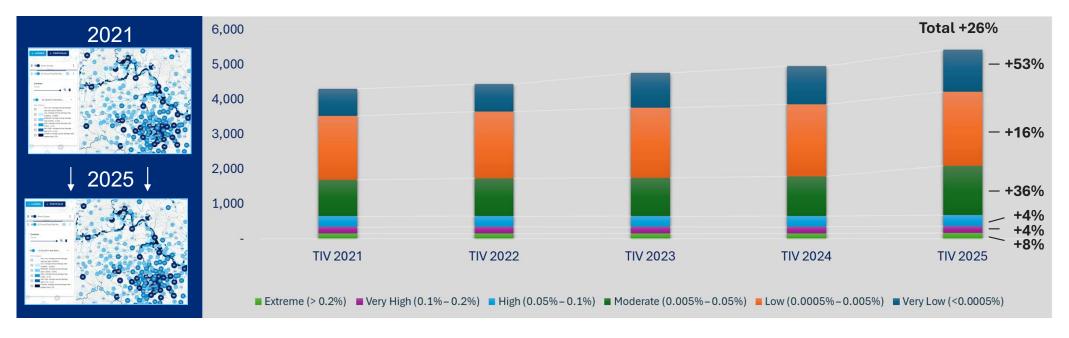
| GC Fluvial FL Risk Rating RES v3.0 (Global)ExtremeExtreme: average annual damage ratio greater than 0.2%i       |                 |
|-----------------------------------------------------------------------------------------------------------------|-----------------|
| GC Hail Risk Rating Residential v1.0 (Global)<br>Moderate 6: annual average damage ratio 0.0275% - 0.032%       | Moderate<br>(i) |
| GC Straight-Line Wind Risk Rating RES v1.0 (Global)<br>Moderate 1: annual average damage ratio 0.005% - 0.0095% | Moderate        |
| GC Wildfire Risk Rating Residential v1.0 (Global)<br>Low 1: annual average damage ratio 0.0005% - 0.00095%      | Low<br>i        |
| <b>GC Tornado Risk Rating RES v1.0 (Global)</b><br>Low 5: annual average damage ratio 0.0023% - 0.00275%        | Low (i)         |
| GC Pluvial FL Risk Rating RES v1.0 (Global)<br>Low 10: annual average damage ratio 0.00455% - 0.005%            | Low [           |
| GC EQ Risk Rating RES v1.0 (Global)<br>Very Low: average annual damage ratio less than 0.0005%                  | Very Low        |

### GCAT Risk Rating – Use Case Accumulation Monitoring

Exposure at Risk



Compute the portfolio accumulations within flood risk bins (or any other peril). Monitor portfolio performance over time to measure impact of UW guidelines.


| + LAYERS + PORTFOLIO                                                                                                                                               | Risk Category                                          | ΤΙV      | Risk Count |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|------------|
| Demo_Europe     GC Fluvial Flood Risk Rat                                                                                                                          | Very low: average annual damage ratio < 0.0005%        | €786.68M | 1.89K      |
| Controls<br>Opacity                                                                                                                                                | Low: average annual damage ratio 0.0005% – 0.005%      | €1.83B   | 4.44K      |
| GC Fluvial FL Risk Ratin  Risk Category Very Low: average annual damage ratio less than 0 0005%                                                                    | Moderate: average annual damage ratio 0.005% – 0.05%   | €1.55B   | 3.72K      |
| Low: average annual damage ratio<br>0.005% - 0.05%<br>Moderate: average annual damage<br>ratio 0.005% - 0.05%<br>High: average annual damage ratio<br>0.05% - 0.1% | High: average annual damage ratio 0.05% – 0.1%         | €301.56M | 908        |
| Very High: average annual damage<br>ratio 0.1% - 0.2%<br>Extreme: average annual damage ratio<br>greater than 0.2%                                                 | Very High: average annual damage ratio 0.1% – 0.2%     | €193.63M | 473        |
| 200                                                                                                                                                                | Extreme: average annual damage ratio greater than 0.2% | €151.25M | 463        |

### GCAT Risk Rating – Use Case Accumulation Monitoring

**Exposure at Risk** 



Compute the portfolio accumulations within flood risk bins (or any other peril). Monitor portfolio performance over time to measure impact of UW guidelines.



### **GCAT Risk Rating – Use Case Climate Change Impact**

**Future Projections for Current Portfolios** 



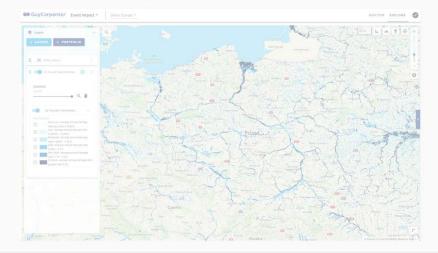
### Climate change impact to flood policies?

Risk rating maps for future climate scenarios can be used to understand the impact of climate change on an existing portfolio. This is possible by comparing the portfolio aggregation using current and future risk rating.

|                                                                                                 | Baseline                |                           |                |
|-------------------------------------------------------------------------------------------------|-------------------------|---------------------------|----------------|
| <b>€4.29B</b><br>TIV                                                                            |                         | <b>11.9K</b><br>Risk Coun | ıt             |
| Risk Category                                                                                   |                         | TIV                       | Risk Count     |
|                                                                                                 |                         |                           |                |
| Very low: average annual damage ratio less that                                                 | n 0.0005%               | €786.68M                  | 1.89K          |
| Very low: average annual damage ratio less that<br>Low: average annual damage ratio 0.0005% – 0 |                         | €786.68M<br>€1.83B        | 1.89K<br>4.44K |
| , , ,                                                                                           | .005%                   |                           |                |
| Low: average annual damage ratio 0.0005% – 0                                                    | .005%<br>5 – 0.05%      | €1.83B                    | 4.44K          |
| Low: average annual damage ratio 0.0005% – 0<br>Moderate: average annual damage ratio 0.005%    | .005%<br>6 – 0.05%<br>% | €1.83B<br>€1.55B          | 4.44К<br>3.72К |

| 3°C | Warming | Scenario |
|-----|---------|----------|
|     |         |          |

| €4.82B | 13.4K      |
|--------|------------|
| TIV    | Risk Count |


| Risk Category                                           | τιν      | Risk Count |
|---------------------------------------------------------|----------|------------|
| Very low: average annual damage ratio less than 0.0005% | €911.68B | 2.52K      |
| Low: average annual damage ratio 0.0005% – 0.005%       | €1.62B   | 4.43K      |
| Moderate: average annual damage ratio 0.005% – 0.05%    | €1.41B   | 3.92K      |
| High: average annual damage ratio $0.05\% - 0.1\%$      | €364.55M | 1K         |
| Very High: average annual damage ratio $0.1\% - 0.2\%$  | €238.43M | 671        |
| Extreme: average annual damage ratio greater than 0.2%  | €280.03M | 810        |

### **GCAT Flood Risk Assessment**

#### **Probabilistic Models and Zonation Approaches**

#### 1 - GCAT Risk Rating Layers

| Helps with:       | Technical underwriting, Identification of loss drivers,<br>Monitoring of UW guidelines and portfolio<br>performance |
|-------------------|---------------------------------------------------------------------------------------------------------------------|
| Release:          | 2024                                                                                                                |
| Perils available: | Fluvial flood, pluvial flood (wildfire, earthquake, tropical cyclone, severe convective storm)                      |
| Risk metric:      | Occupancy specific annual damage ratio                                                                              |



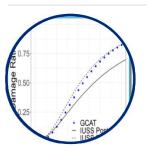
#### GuyCarpenter

#### 2 - GCAT Probabilistic Model



### **Principles of a Cat Model**




#### EXPOSURE/BUILT ENVIRONMENT

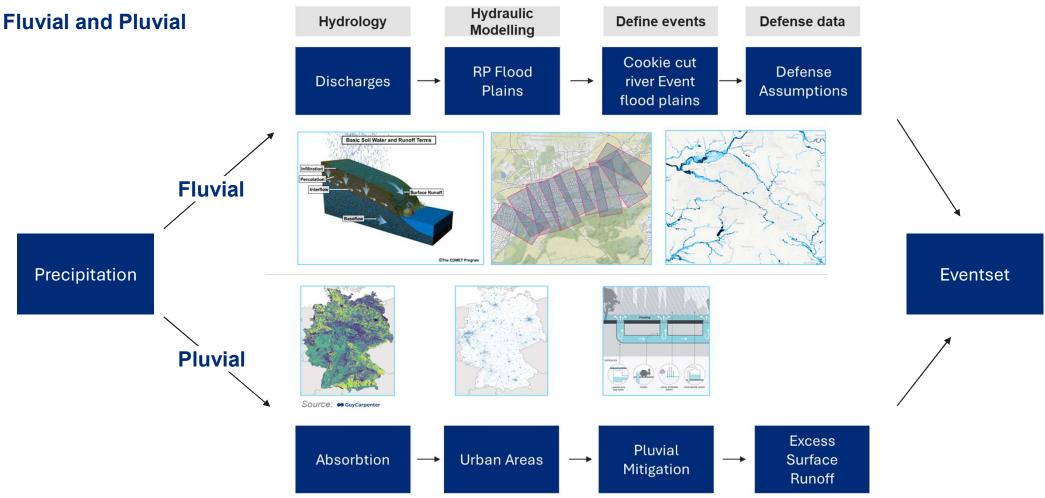
- Portfolio data complete ?
- Exact locations / Aggregation ?
- Construction codes ?



#### HAZARD

- Historical records complete?
- Intensities vs. Frequency ?
- Defenses ?




#### VULNERABILITY

Any claims experience from past events ?

PREMYSON

- Inflation / post loss amplification ?
- Risk types and secondary modifiers ?

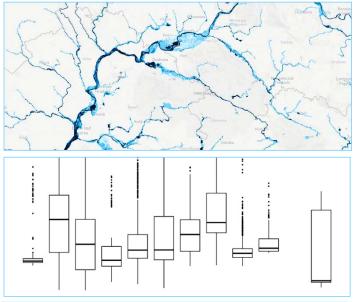
### **Eventset Generation**



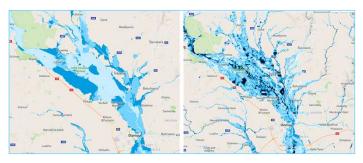
### **GCAT Flood Risk Assessment**

#### GCAT model resolving uncertainty in flood risk



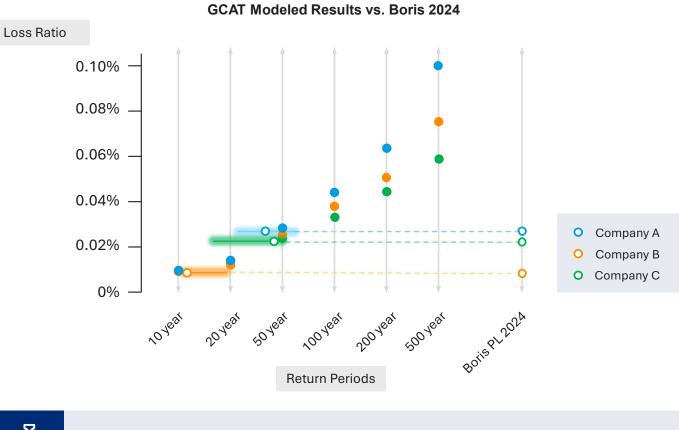

#### **Flood Hazard**

- Flood types covered: Fluvial and Pluvial
- Includes extreme (whilst unlikely) precipitation events and discharges
- Hydraulic simulations based on high resolution DTM (5m!)
- Comprehensive river network covers small size rivers and creeks
- Latest defense assumptions

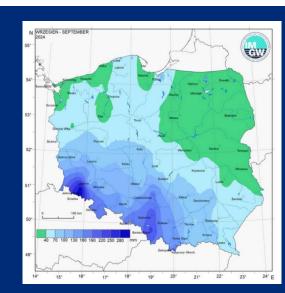



Goals for simulated synthetic eventset:

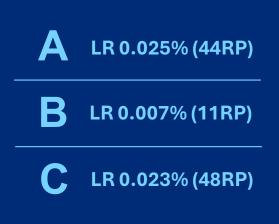
Reproduces historic flood event losses with realistic return periods Annual average losses reflect loss experience within uncertainty bands Credible tail event losses






### **GCAT Model Results and Boris 2024**


#### EP-Curve Samples for 3 Companies







Portfolio dependent Boris return periods for different return periods




#### GuyCarpenter

Source: 2023 report prepared by NMG Consulting

### **GCAT Flood – Probabilistic Modules**

#### Summary of a Comprehensive Flood Risk Assessment Framework





# Thank you

A business of Marsh McLennan

Copyright © 2025 Guy Carpenter & Company GmbH. All rights reserved.